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Stress in frictionless granular material: Adaptive network simulations
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We present a minimalistic approach to simulations of force transmission through granular systems. We start
from a configuration containing cohesiveensile contact forces and use an adaptive procedure to find the
stable configuration with no tensile contact forces. The procedure works by sequentially removing and adding
individual contacts between adjacent beads, while the bead positions are not modified. In a series of two-
dimensional realizations, the resulting force networks are shown to satisfy a linear constraint among the three
components of average stress, as anticipated by recent theories. The coefficients in the linear constraint remain
nearly constant for a range of shear loadings up to about 0.6 of the normal loading. The spatial distribution of
contact forces shows strong concentration along “force chains.” The probability of contact forces of magni-
tudef shows an exponential falloff with The response to a local perturbing force is concentrated along two
characteristic rays directed downward and laterally.

PACS numbd(s): 45.05+x, 83.70.Fn

[. INTRODUCTION is well defined. It depends on the shapes and sizes of the
The fragility of granular matter is a longstanding preoc_beads, their frictional properties, and how the pack was con-

cupation of engineer§l,2] and a recent preoccupation of Structed. _ ,
physicists[3,4]. By granular matter we mean a static assem- If the perturbing forces become too large, motion occurs.
bly of hard, spheroidal grains whose contact forces may b8eads shift their positions and form new contacts. This mo-
compressive but not tensile. Thus granular matter is noncdion may be reversible, so that the beads return to their origi-
hesive. Mohr and Coulomb recognized a fundamental conral positions when the perturbation is removed. This motion
tinuum consequence of the noncohesive state. There can beay also be irreversible, with the positions altered after re-
no coordinate system in which the shear stress exceeds sommval of the perturbation. The thresholds for reversible and
fixed multiple x of the normal stres§2]. This “Mohr-  for irreversible motion are fundamental ways to characterize
Coulomb” condition limits the stresses that a granular matethe nonlinear response of the pack. For any given pack there
rial can support, and thus amounts to a form of fragility.is a weakest perturbing force distribution that causes motion.
When this condition is violated, building foundations settle This threshold force may go to zero as the size of the pack
and embankments slip. grows. Many simulations have sought to characterize the
Modern civil engineering practicg5] views the stress above features of a granular pafk2—14. These studies
field in a granular medium as divided into elastic and plastianodel the system in a realistic way that requires detailed
zones. The stresses in these plastic zones are at the Molspecifications and many parameters. This detail makes it dif-
Coulomb limit, and thus these zones are at the margin oficult to discern which observed features are inescapable con-
stability. The stress in the elastic zones is within the boundsequences of the granular state, and which are properties of
of stability and thus the stress here is transmitted as in athe particular realization. In this paper we take the opposite
elastic body. approach, sacrificing realism for the sake of simplicity. We
Recently attention has turned to the microscopic origin ofseek the simplest system that shows the instabilities of non-
the macroscopic fragility of granular media. The microscopiccohesive material. Thus our system consists of frictionless,
pattern of contact forces and bead motions shows strong Ispherical beads, which have been deposited into a container
cal heterogeneity and history dependef@ell]. The his- one at a time and not moved thereafter. Such a system de-
tory of prior motion in a region clearly influences the way it velops tensile contacts.
transmits forces. The prior motion may affect thecoeffi- To avoid these contacts, we must define some motion that
cient in the Mohr-Coulomb law, the elasticity tensor, or fur- evolves the pack to a more stable state. Again we choose a
ther constitutive propertiel3]. The question is, for a given procedure favoring simplicity rather than realism. We seek
history of relaxation to a static state, how are these forcethe stable state attainable with minimal disturbance from the
transmitted and what range of forces can be supported. Thaitial state. Accordingly our procedure does not move the
transmission of forces can be expressed as a linear-responiseads, but rather removes and adds contacts one at a time in
property of a granular pack. An infinitessimal force is addedorder to attain a stable contact network. In this sense our
to the bead at positior, and the corresponding incremental simulation is an adaptive network.
force on a contact at is determined. For sufficiently small This network isisostatic[15]: the contact forces are de-
perturbations of a finite pack, this linear response funaBon termined from the applied forces solely through the force
equilibrium of each bead, without reference to bead displace-
ments or material deformation.
*Present address: Bell Labs, Lucent Technologies, 600-700 Our adaptive method demonstrates that frictionless granu-
Mountain Ave., Murray Hill, NJ 07974. lar materials can be mechanically robust. For a given load,
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the simulation converges to a state of no tensile contacts. A The above equation should be valid for any set of external
change in the applied load of order unity can be applied witHorces; hence,

only minor shifts in the contacts. Further, the three compo-

nents of the stress in two dimensions obey a constitutive law 6%, =G(ap]|y)érap. (4)

of the “null stress” type: a weighted sum of the three com- .

ponents vanishes, the Weights depending on the packing bwe conclude tha6 is the response function both for contact

not on the loading. force and the displacement field. Note that the displacement
discussed here is not due to deformation of the beads. It
Il. RESPONSE EUNCTION corresponds to a “soft mode” that preserves the distances

between all contacting beads other than the perturbed con-
Our system is a set of spherical beads, whose radii argct.

chosen randomly within a moderate range. These beads are In a general case, finding the response function for a
supported on one side, called the bottom, with a layer ofjiven configuration is a nonlocal problem, which requires
fixed spheres. The widti of the system is much larger than solving a set of linear equatioii). The task becomes much
a bead. The beads are arranged densely in this space up teasier for the case afequential packingThis is created by
heighth. A fixed downward forcd=, is applied to each bead adding one bead at a time. The requirement of mechanical
lying at the upper surface. We choose a configuration ostability implies that any newly added bead has exadtly
beads that is mechanically stable: the normal forces acting &supporting” contacts(in d-dimensional spage If all the
the bead contacts oppose the applied fofegsind prevent contacts were permanent, and tlisranch tree structure
motion. Initially, we allow for tensile(negativeé contact were not perturbed by the future manipulations, the response

forces. function might be found by a simple unidirectional projec-
We label theN beads by an index. Then we may denote tion procedure. Indeed, since there are exadtupporting
the contact force from bead to beadg by the scalarf 5. contacts for any bead in a sequential packing, the total force

Newton’s third law dictates that for at, 8, fg,=f.s. The  F_ including external forcem, and that applied from the

N, contact forces are constrained by the requirement that theupported beads, can be uniquely decomposed onto the cor-
total vector force on each bead vanishesdldimensions, respondingj components, directed a|ong the Supporting unit
there are evidentI}dN such constraints. The bead pOSitionSVectorsnay_ This gives the values of the supporting forces.

X, are likewise constrained by the geometrical condition thatrhe f's may be Compacﬂy expressed in terms of a generaj-
the distance between two contacting beadsnd 8 must be  jzed scalar product. . .| ...),:

the sum of their radir ,+r 4. There areN; such constraints

for thedN quantitiesx, . If all these constraints are indepen- faﬁ=<’lza|ﬁaﬁ>a' (5)
dent, the numbeN, of contacts must be exactiyN [16].

Then the system is isostatic: tkdéN force balance equations The scalar product ...|...), is defined such that
are just sufficient to determine thé, contact forces. The <ﬁaﬁlﬁa5’>a=5ﬁﬁ" for the supporting contactg, 8’ of

equations of force balance may be written beada. In general, it does not coincide with the conventional
scalar product. The resulting response functiGie 3| y),
> faﬁﬁaﬁzlra, (1) can be calculated as the superposition of all the projection
Ble) sequencesi.e., trajectoriey which lead from bead to the

Gbond ap:

Here B(«) denotes the set of contacting neighbors of bea
a, F, is an external force applied to this bead, dng and

the unit vectom,,; represent the magnitude afiiked) di- G(aply)= > ) |ﬁyal>7<ﬁyal|ﬁala2>al e
rection of the contact force between the two beadsnd 3. yoer. e
Since all the above equations are linear, the response of the x<ﬁaka|ﬁa,8>a' (6)

system to a given external forcing is determined by the re-

sponse functiors: Here the summation is done over all the trajectories

f.5=G(aply)F, ?) (y—ay1— . .—>ak—>a_—>,8) _such that any b_ead in the
sequence is a supporting neighbor of the previous one.

The response functio® determines not only the response to
an external force but also the global displacement field asso- Il. ADAPTIVE NETWORK SIMULATION
ciated with local geometrical perturbation of the network. In
order to see this, let us assume that the packing is subjected For a large enough system, sequential packing is not com-
to external forcingF, . Then we relax exactly one of thé patible with the requirement of nontensile contacts. Anytime
geometric constraints, and change infinitesimally the diswhen this requirement is violated, a rearrangement occurs
tance between two contacting beagg=|x;—x,|. As long and system finds a “better” configuration. One might expect
as the connectivity of the network does not change, its mothat this would make the problem of force propagation a
tion is nondissipative. This means that the work done to disdynamic one. However, it is possible to limit oneself to a

tort the packing locallygr ,4f . 5 is the work against external Purely geometrical consideration, following the ideas of the
forces, i.e., previous section.

SupposeaB is a “bad bond,” whose contact force is
Xy F =01 opf o= 5raﬁG(aB|y) -F,. (3 negative(tensile. This means that the network would move
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in such a way that the two beadsandg are taken apart. In A contact force on an arbitrary contact is now determined
other words, the soft mode associated with the perturbatioby a combination of external forces, and the above-
of the @ bond is activated, and for small enough displace-determinedf .z . This results in the following expression
ments all the beads move in accordance with &y. The  for G(Au|y) (Au other thana’B’);
motion stops when a replacement contact is created, i.e.,
when a gap between any two neighboring beads closes. G(Au|y)=Go(\u|y)

In this paper, we limit ourselves to this linear approxima-

tion. It should be understood that E@) is correct only for Nor g [Go(hula’) = Go(AulB")]

infinitesimal di : ~Go(aBl )% , et
infinitesimal d|splacemgnts, and in a general case one should Narpr- [Go(aBla’)—Go(aB|B)]
account for the evolution of the response function in the

course of the rearrangement. We avoid the problem of (10

changingG by permitting only infinitessimal motion in the , . )
model. We imagine that the “bad bond” gets deactivated, This prescription gives the response of the pack to a class

and it is replaced with a rigid “strut” between two neigh- o_f contact'r_eplacement's. The prescription does not require
boring beads that were not in contact in the previous Con_elther the initial or the final state to be stable: it allows ten-
figuration. There is a natural choice for where the strutSil® contacts. Using the contact replacement procedure we
should be placed to cause minimal disturbance. Each pair fay investigate the stability of a pack systematically. Our
noncontacting neighborgs has a gag ,s—r,—rs. When algorithm has two major stages: network preparation and its
the contacta3 is removed, the distanéeaﬁ iys allowed to  mutation” via the contact repla_lc_ement scher_ne. By repeat-
change; this change alters the gaps of other neighpéras "9 this adaptive procedure s_ufﬂme_ntly many times, one may
specified by Eq(4). Extrapolating this linear-response equa- hope to get the stable configuration without tensile forces

tion, motiondr .z required to close gapé is given by (for a given 'Oa‘?”’.‘?l Just like the real system would do..
There is a possibility that the present geometry-preserving

algorithm could not stabilize the network. For instance if the
O yp== yo Tyl _ 7) tangential component of the surface force is strong enough, it
7 ny5[GlaBly)—G(aBld)] is expected to initiate a macroscopic avalanche, as in a sand-
pile with slope exceeding the critical angle. This class of

(For many choices ofé the requiredsr 4 is infinite since ~ rearrangements is beyond the capabilities of our connectivity
the a8 contact has no effect on thes gap) Using this ~ Mutation scheme. This circumstance has even certain advan-

formula, we identify the gam’ B’ that would require the t@ges: we can determine the critical slope from our simula-
smallest change of, ; in order to close, and we link this pair tions as the direction of the surface force at which the algo-
by a strut. rithm stops working. It should be emphasized that our
After we have found the replacement bond, the modifiecd@/gorithm can easily be modified to incorporate the change in
response function can be foundthout solvingthe whole set ~ the network geometry. The major reason why we use the
of force balance equatiori&)! We denote the response func- @bove geometry-preserving'strut” ) approximation is its
tion for the initial packing asS,. The new response function Much higher computational effectiveness.
G must be such that there is no longer a contact férge
In general there is such a force in the initial packing. How- IV. SIMULATION DETAILS AND RESULTS
ever, we may alter this unwanted force by adding an external
force to some other bead. We choose to add external forces
to beadsx’ andB’ that mimic a contact force: the two forces ~ We begin by creating a two-dimensional sequential pack
are equal, opposite, and directed along the unit veﬁl:;o,g, _of variable-sized discs by.adding them one by one. The stud-
joining them, with a strength denoteg, 4 . Our choice of ied system has the following parameters: polydispersity 10%
the replacement pair guarantees that the effeat'afr 8’ on ~ (bead radii from 1 to 1.1 number of beads\ from 250 to

the a3 contact is nonvanishing. Then the force on this con-200 (the major limitation is the computation timeAlthough
tact is given by there is no gravitational force acting on the beads in these

simulations, the statistics of the packing can be varied by
changing the “pseudogravity” directiog. Namely, while

r

A. Method

faﬁ:zy Fy GolaBly)+ T o p[GolaBla’) adding a bead to the packing we requgeto be directed
between the two supporting contacts. Simultaneously, we
—Go(aﬁ|ﬁ')]-ﬁar5r- (8)  calculate the response function, by using the sum-over-

trajectories formula, Eq6).

We may make thig ,; vanish by a proper choice of the Then we apply certain load to beads on the surface. In the
external forcef 4 =23F7- G(a’'B’'|y), whereG(a'g'|y)  Studied cases, the forces applied to the surface beads were all

is the new response function, found by requiring tha the same, with the only princjpal variab!e bei|_1g the ratio of
vanish in Eq.(8): the two _componen'gsﬁxlfy (y is the vertical d!re(_:tlon, the
surface in average is parallel xadue to the periodic bound-
ary conditions in the horizontal directipnAs long as the
G(a'B'|y)=— = GolaBly) _ response function is given, we may find all the contact forces
N g -[GolaBla’)—Go(aB|B')] for a given load. As we have found, tensile contacts appear
within a few beads from the surface. We analyze the sign of
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\

FIG. 1. Four typical steps in our annealing sequence. The beads 1 5 pattern of contact forces from two different annealing
are pictured as circles and the bonds are shown as gray linef;ns on the same bead pack. Each contact force is shown as a line
Upper-left to lower-right shows moves 804-807. The entire annealiyining the centers of the two contacting beads. Thickness of the

ing process required 1491 such moves. In each frame the removedle s proportional to the magnitude of the force. Dark lines show
contact is shown as a thick-white line; the added contact is showg ..os btained by replacing each tensile contact as it is encoun-

as a thick-black line. tered in a search from the top down. Light lines show the forces

obtained when only strongly tensile contacts were replaced at first.
the contact forces one by one, from top to bottémthe  Then when no further strongly tensile contacts remained, the rest of
order opposite to the one in which the beads were originallfhe tensile contacts were relaxed. The heavy-horizontal lines along
depositegl When a tensile contact is encountered, we followthe bottom are artifacts introduced by our rendering program.

the contact replacement procedure described in the previous

section: find the new bond and modify the response functiogystem for a given threshold level, we reduce the tolerance
to account for the connectivity change. Now we repeat thénd repeat the procedure. The threshold plays a role of tem-
procedure again starting from the very top until there is ndP€erature: keeping it finite allows us to deviate from the target

tensile contact left in the system Figure 1 shows a sequend&ontensilg state of the system and explore its vicinity at the

of four typical steps in this procedure. Evidently the removedconfiguration space. The second annealing algorithm con-
and the added contact may be far apart. verges considerably faster than the zero-tolerance one. For

It sometimes happens that this prescription does not renstance, it took us from 1500 to 3000 iterations to complete
move the tensile contacts: the removal of a tensile contadhe original algorithm with 500 beads, while the annealing
continues to generate others. In this case we may modify ougrocedure reduced the needed time to approximately 500—
procedure for selecting the next tensile contact to removel000 steps. Interestingly, the variation of the convergence
For example we may select the strongest tensile contact irfime is of order of the time itself.
stead of that tensile contact having the largest sequence num- We have found that the contact configuration resulting
ber. Such alternative prescriptions seem to have little effedrom the annealing procedure does differ from the one gen-
on the force network, as discussed in the next section. ~ erated by the zero-tolerance algoritiisee Fig. 2 However,

we did not detect any statistically-significant variation of the
B. Variability and reproducibility ensemble-averaged properties of the final state obtained with
the two methods. These properties included the average

While our bond replacement procedure mimics the Waystress and the contact force probability distribution function
the real system should rearrange, our choice of the “badppp) presented below.

bond” to be replaced is far more arbitrary. For instance,
instead of checking the sign of the contact forces one by one
from top to bottom, we could go the other way, or try to
replace the contact bearing the largest negative force first. One of the crucial results of the simulation is that our
Neither of these prescriptions is very realistic; however, wegeometry-preserving adaptive network algorithm does con-
find that the results are insensitive to the procedure. In ordeterge for a considerable range of force direction. It stops
to probe this sensitivity, we compared the results from twoworking whenl|f,/f,| approaches 0.or packing prepared
different “annealing” procedures. The first was the proce-at vertical pseudogravitg. This suggests that the critical
dure described in the previous subsection. The second pretope for the frictionless packing is about 30 degrees, con-
cedure is as follows. We perform exactly the same one-bysistent with simple theoretical arguments and some experi-
one check, as in the previous case, but do not remove ments[17] Note that this slope may considerably exceed the
negative bond unless the magnitude of the force exceeds ceingle of repose in dynamic experiments and simulations be-
tain tolerance threshold. When no more bonds remain in theause of hysteresis associated with the lack of damping in

C. Macroscopic constitutive equation
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the frictionless system. Presumably, the critical slope can be 1
observed by quasistatic tilting of a zero-slope packingg @~ oo ——————======—===

Another interesting observation is that the eventual con-
nectivity of the packing is not too different from the original 0, /o
sequential packing. For example, the 500-bead system need — o /0”
up to 3000 iterative stepgearrangemenigo find the stable 05 vy
state, and yet only 150 out of 1000 contacts (15%) in the i
final configuration are different from the original network. >l
This provides us with a solid background for using the se- =
guential packing as the zero-order approximation of the real , f /£
network. This was one of the major hypothesis used in our o Mw”“" R
earlier work[16] to derive the constitutive equation of fric- -0.4 -0.2 / 0.2 0.4
tionless granular packing. _-

One more hypothesis, used for derivation of the macro-
scopic equation for stress is the mean-fidietoupling An-
satz The average stress in a region of a sequential packing
can be writter{16] -05°

FIG. 3. Various components of stress tensor in original sequen-
ol (x) = < > sx,—x(E, naﬁ>aniaﬁn{wra5> , tial packing(before the adaptive stages functions of the direction
a Bl—a) of the applied force. Note a remarkable agreement between the
(1) mean-field resultsdashed linesand the simulation datésolid

The sumg is over the beads that support the beadOur lines).

mean-field hypothesis consists in assuming that the force-

related part of this average is independent of the geometricﬁm directions of “pseudograwty,’gxlgy:O ar_1d_ 0.2. The
part. We define agreement between the two curves is surprisingly good as

long as the direction of the applied force does not deviate too
_ much from the preparation conditiofise., from the pseudo-
f(X)E<E 5(Xa—X)<Fa|>, (12)  gravity vectoy, see Fig. 4.

and D. Response function

. o As noted above, our system transmits forces in accord
7'E< > |naﬂ>an'aﬁn'a[3raﬁ>. (13)  with a null-stress constitutive property. Given the null-stress
Bl—a) law, one may infer the corresponding response func@on

Then our mean-field assumption amounts to the statement 15

oi=f. 7 (14) g O /0,

~

The mean-field hypothesis can be directly checked for

unperturbed sequential packing, where both fiéldsd 7 are T

well defined. The results of such a check are represented or "\K————J-;

Fig. 3. The exact values of various stress components are T~

shown to be in an excellent agreement with their evaluation S

based on the mean-field ansatz. We conclude that the mea

field is a very good approximation at least for nonadaptive

sequential packing. — gl 05
As long as the rearrangements are switched on, thereisnc — g&/8,=—0.2

obvious way to define the concept of supporting neighbor,

and therefore the “force from subsequent beadsis ill

defined as well. However, a more general meaning of con-

stitutive Eq.(11), is that the stress is parametrizable with

somevector f, and the third-rank material tenser estab- -0.6 -0.3 0 0.3 0.6

lishes this parametrization. We now takeorresponding to Oxy / Oy

the original prerearrangement sequential packing and probe FIG. 4. The only free

. .4 parameter of the stress tensgg/ o,y ,
the af‘satz by checking whether theA total strasfter the as a functions of the direction of the applied force, after thyey adap-
adaptive proceduyean be expressed asf. In other words,  ve algorithm is completed. The solid lines show the simulations
we compare the only unknown component of the stigss  results corresponding to two different directions of “pseudograv-
(two other are given by the boundary conditipngith its ity” vector g. The dashed lines represent the null-stress law corre-
theoretical value obtained from We performed this check sponding to the material tensercomputed for the original sequen-
for two different classes of packing, corresponding to differ-tial packing.
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FIG. 5. Two patterns of contact forces resulting from a perturb-

ing point force in a single relaxed configuration. Perturbation was kg 7. pattern of contact forces from two bead packs of differ-

an infinitesimal downward force applied at the points shown asyn¢ noiydispersity. Left picture has ten percent variation in bead
heavy dots. A compressive contact force is indicated as a dark ling,j,s: right picture has three hundred percent variation. Each con-
joining the centers of the two contacting beads. Thickness is progyct force is shown as a line joining the centers of the two contact-
portllonal to the magnltude of the force. Tensile forces are |nd|cate(ﬁqg beads. Thickness of the line is proportional to the magnitude of
as lighter-gray lines. the force. In the right picture the bead positions are indicated in

light gray.
The force transmission is transmitted from a point source

according to a wavelike equati¢]. In a medium where all disorder, and one cannot resolve them immediately below

nonvertical directions are equivalent, the force should propal’® Source. Another important observation, which also sup-
orts the null-stress approach, is that the average response is

gate downward along slanting characteristic lines, Whosvirtuall zero above the source. Note that we have studied
slope is dictated by the only parameter in the null-stress law y '

X S o M only the linear response of the system, so that the perturba-
The responding region lies within the “light cone” bounded 'Pn did not change the contact network. This need not be the

. . . . tl,
by these Ilnes: In two d|men3|ons, thg response c_:onS|sts_ ¥ase in the experiments involving strong local perturbations
two delta functions traveling along the light cone. Disorder iSr19.

expected to scatter the wave solutions of the pure system,
thus resulting in a widening of the delta peaks. This scatter-
ing could be sufficient to create qualitative new mesoscopic
behavior from localization effectsl8]. Our simulated sys- Our simulation allows us to address yet another interest-
tem shows strong influence from disorder, as illustrated iing and widely-discussed problem: the statistics of contact
Fig. 5. Because there can be no vertical-force response at tfigrce. Recent experiments indicate that this distribution can

top of the system, we observe a global anisotropy, withPe WeI.I approximateq as exponential, tha; is, it i_s qonsider—
stronger responses below the source than above it. The rgPly wider than a naively-expected Gaussian. This is related
sponse is also strongly heterogeneous to the strong heterogeneities of the mesoscopic stress in

Our simulations allow us to perform ensemble averaginfranmar matter: it appears to be localized to stringlike struc-
of the response stress field. Figure 6 shows the results fres known as force chains.

such averaging over 600 realizations of the network. As th?he sign of the contact force, and its amplitude appears to
perturbation propagates deep into the sample, the respon Fow indefinitely with the pécking depth. After the rear-
function gets a two-peak shape, in a good agreement with the,,jements, there are no negative forces in the system, and
null-stress law. As expected, the peaks are broadened by thgsrefore their amplitude cannot grow forevéhe total
transmitted force is fixed Figure 7 shows the spatial distri-

E. Contact force distribution function

In the initial sequential packing there is no constraint on

0.1, Oy bution of the contact forces in the systems of two different
7|\ —_— =9 degrees of polydispersitgfter the adaptive stage is com-
———y=3 pleted. One can clearly see that our simulations are at least in
———y=6 qualitative agreement with experiment: it is easy to identify

the force chains in both cases.

We were also able to make a quantitative comparison be-
tween the simulations and experiments. Figure 8 shows the
probability distribution function of the contact force taken
from our simulations of almost monodisperse system. It ap-
parently agrees with the exponential histogram observed ex-
perimentally. An insight into the origin of this exponential
behavior is given by the “q model” due to Coppersmith
et al. [10]. Somewhat more realistic modification of this
model have been proposed by Claudiral.in Ref.[20]. The

0021 further discussion of this intriguing result will be published
elsewherd16].

FIG. 6. oy, component of the ensemble-averaged response to a
unit vertical force applied at the origik&0,y=0). The response V. CONCLUSION
is measured at several horizontal cross sections below—(3,

—9) and abovéy=6) the source. Coordinatesandy are measured In the study of granular materials, clearcut confirmation
in units of minimal bead radius,,;,, and the unit stress s, . of theories has been elusive. One predicted feature of great
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10° . The simulation method has further interesting features. It
demonstrates that stable configurations of isostatic force net-
works can be found without changing the positions of the
nodes. It also reveals order-unity variability in the micro-
scopic force distribution resulting from the relaxation pro-
cess. Finally, it shows strongly heterogeneous response to
point forces—much stronger than that of the geometric con-
tact network. This suggests strong multiple-scattering fea-
tures in the force propagation.

The observed exponential probability distribution func-
tion for the contact force is in a good agreement with the
experiments. Since there is also an indirect experimental sup-
port for the null-stress law, our choice of the systémard
frictionless sphergsappears to be an adequate simplification
- . . \ . to capture the basic physics of granular rigidity. The further

0 1 2 3 4 5 simplifications, such as the fixed-geometry adaptive algo-
f<f> rithm provide an effective tool for the future studies of this
problem. This may include a study of nonlinear response of
the system to large localized perturbation, effects of polydis-
persity, and history dependence of the response.

FIG. 8. Probability distribution function of the contact force in
granular packing.

interest is the null-stress constitutive law postulated3h

We have verified that null-stress behavior occurs in a simpli-
fied granular system embodying disorder, perfect rigidity and
cohesionless contacts. We have measured the free parameterThe authors thank R. Ball, S. Coppersmith, D. Mueth, H.
in the null-stress law for several situations. We have condJaeger, S. Nagel, and J. Socolar for valuable discussions.
firmed the validity of our major assumptions used for micro-Likewise, we thank the participants in the Jamming and Rhe-
scopic foundation of this constitutive lajt6]. Our simula-  ology Program of the Institute of Theoretical Physics. This
tion also allowed us to compute directly the ensemblework was supported in part by the National Science Founda-
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