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Stress in frictionless granular material: Adaptive network simulations

Alexei V. Tkachenko* and Thomas A. Witten
The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

~Received 16 November 1999!

We present a minimalistic approach to simulations of force transmission through granular systems. We start
from a configuration containing cohesive~tensile! contact forces and use an adaptive procedure to find the
stable configuration with no tensile contact forces. The procedure works by sequentially removing and adding
individual contacts between adjacent beads, while the bead positions are not modified. In a series of two-
dimensional realizations, the resulting force networks are shown to satisfy a linear constraint among the three
components of average stress, as anticipated by recent theories. The coefficients in the linear constraint remain
nearly constant for a range of shear loadings up to about 0.6 of the normal loading. The spatial distribution of
contact forces shows strong concentration along ‘‘force chains.’’ The probability of contact forces of magni-
tude f shows an exponential falloff withf. The response to a local perturbing force is concentrated along two
characteristic rays directed downward and laterally.

PACS number~s!: 45.05.1x, 83.70.Fn
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I. INTRODUCTION

The fragility of granular matter is a longstanding preo
cupation of engineers@1,2# and a recent preoccupation o
physicists@3,4#. By granular matter we mean a static asse
bly of hard, spheroidal grains whose contact forces may
compressive but not tensile. Thus granular matter is non
hesive. Mohr and Coulomb recognized a fundamental c
tinuum consequence of the noncohesive state. There ca
no coordinate system in which the shear stress exceeds
fixed multiple m of the normal stress@2#. This ‘‘Mohr-
Coulomb’’ condition limits the stresses that a granular ma
rial can support, and thus amounts to a form of fragili
When this condition is violated, building foundations set
and embankments slip.

Modern civil engineering practice@5# views the stress
field in a granular medium as divided into elastic and plas
zones. The stresses in these plastic zones are at the M
Coulomb limit, and thus these zones are at the margin
stability. The stress in the elastic zones is within the bou
of stability and thus the stress here is transmitted as in
elastic body.

Recently attention has turned to the microscopic origin
the macroscopic fragility of granular media. The microsco
pattern of contact forces and bead motions shows strong
cal heterogeneity and history dependence@6–11#. The his-
tory of prior motion in a region clearly influences the way
transmits forces. The prior motion may affect them coeffi-
cient in the Mohr-Coulomb law, the elasticity tensor, or fu
ther constitutive properties@3#. The question is, for a given
history of relaxation to a static state, how are these for
transmitted and what range of forces can be supported.
transmission of forces can be expressed as a linear-resp
property of a granular pack. An infinitessimal force is add
to the bead at positionx0 and the corresponding increment
force on a contact atr is determined. For sufficiently sma
perturbations of a finite pack, this linear response functionG

*Present address: Bell Labs, Lucent Technologies, 600-
Mountain Ave., Murray Hill, NJ 07974.
PRE 621063-651X/2000/62~2!/2510~7!/$15.00
-

-
e

o-
n-
be
me

-
.

c
hr-

of
s
n

f
c
o-

s
he
nse
d

is well defined. It depends on the shapes and sizes of
beads, their frictional properties, and how the pack was c
structed.

If the perturbing forces become too large, motion occu
Beads shift their positions and form new contacts. This m
tion may be reversible, so that the beads return to their or
nal positions when the perturbation is removed. This mot
may also be irreversible, with the positions altered after
moval of the perturbation. The thresholds for reversible a
for irreversible motion are fundamental ways to character
the nonlinear response of the pack. For any given pack th
is a weakest perturbing force distribution that causes mot
This threshold force may go to zero as the size of the p
grows. Many simulations have sought to characterize
above features of a granular pack@12–14#. These studies
model the system in a realistic way that requires deta
specifications and many parameters. This detail makes it
ficult to discern which observed features are inescapable
sequences of the granular state, and which are propertie
the particular realization. In this paper we take the oppo
approach, sacrificing realism for the sake of simplicity. W
seek the simplest system that shows the instabilities of n
cohesive material. Thus our system consists of frictionle
spherical beads, which have been deposited into a conta
one at a time and not moved thereafter. Such a system
velops tensile contacts.

To avoid these contacts, we must define some motion
evolves the pack to a more stable state. Again we choo
procedure favoring simplicity rather than realism. We se
the stable state attainable with minimal disturbance from
initial state. Accordingly our procedure does not move t
beads, but rather removes and adds contacts one at a tim
order to attain a stable contact network. In this sense
simulation is an adaptive network.

This network isisostatic@15#: the contact forces are de
termined from the applied forces solely through the for
equilibrium of each bead, without reference to bead displa
ments or material deformation.

Our adaptive method demonstrates that frictionless gra
lar materials can be mechanically robust. For a given lo
0
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PRE 62 2511STRESS IN FRICTIONLESS GRANULAR MATERIAL: . . .
the simulation converges to a state of no tensile contact
change in the applied load of order unity can be applied w
only minor shifts in the contacts. Further, the three com
nents of the stress in two dimensions obey a constitutive
of the ‘‘null stress’’ type: a weighted sum of the three com
ponents vanishes, the weights depending on the packing
not on the loading.

II. RESPONSE FUNCTION

Our system is a set of spherical beads, whose radii
chosen randomly within a moderate range. These beads
supported on one side, called the bottom, with a layer
fixed spheres. The widthw of the system is much larger tha
a bead. The beads are arranged densely in this space up
heighth. A fixed downward forceF0 is applied to each bea
lying at the upper surface. We choose a configuration
beads that is mechanically stable: the normal forces actin
the bead contacts oppose the applied forcesF0 and prevent
motion. Initially, we allow for tensile~negative! contact
forces.

We label theN beads by an indexa. Then we may denote
the contact force from beada to beadb by the scalarf ab .
Newton’s third law dictates that for alla, b, f ba5 f ab . The
Nc contact forces are constrained by the requirement tha
total vector force on each bead vanishes. Ind dimensions,
there are evidentlydN such constraints. The bead positio
xa are likewise constrained by the geometrical condition t
the distance between two contacting beadsa andb must be
the sum of their radiir a1r b . There areNc such constraints
for thedN quantitiesxa . If all these constraints are indepe
dent, the numberNc of contacts must be exactlydN @16#.
Then the system is isostatic: thedN force balance equation
are just sufficient to determine theNc contact forces. The
equations of force balance may be written

(
b(a)

f abn̂ab5Fa. ~1!

Here b(a) denotes the set of contacting neighbors of be
a, Fa is an external force applied to this bead, andf ab and
the unit vectorn̂ab represent the magnitude and~fixed! di-
rection of the contact force between the two beadsa andb.
Since all the above equations are linear, the response o
system to a given external forcing is determined by the
sponse functionG:

f ab5G~abug!•Fg. ~2!

The response functionG determines not only the response
an external force but also the global displacement field a
ciated with local geometrical perturbation of the network.
order to see this, let us assume that the packing is subje
to external forcingFg . Then we relax exactly one of theN
geometric constraints, and change infinitesimally the d
tance between two contacting beadsr ab[uxb2xau. As long
as the connectivity of the network does not change, its m
tion is nondissipative. This means that the work done to d
tort the packing locally,dr ab f ab is the work against externa
forces, i.e.,

dxg•Fg5dr ab f ab5dr abG~abug!•Fg. ~3!
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The above equation should be valid for any set of exter
forces; hence,

dxg5G~abug!drab. ~4!

We conclude thatG is the response function both for conta
force and the displacement field. Note that the displacem
discussed here is not due to deformation of the beads
corresponds to a ‘‘soft mode’’ that preserves the distan
between all contacting beads other than the perturbed
tact.

In a general case, finding the response function fo
given configuration is a nonlocal problem, which requir
solving a set of linear equations~1!. The task becomes muc
easier for the case ofsequential packing. This is created by
adding one bead at a time. The requirement of mechan
stability implies that any newly added bead has exactlyd
‘‘supporting’’ contacts~in d-dimensional space!. If all the
contacts were permanent, and thisd-branch tree structure
were not perturbed by the future manipulations, the respo
function might be found by a simple unidirectional proje
tion procedure. Indeed, since there are exactlyd supporting
contacts for any bead in a sequential packing, the total fo
F̃a including external forceFa and that applied from the
supported beads, can be uniquely decomposed onto the
respondingd components, directed along the supporting u
vectorsnag . This gives the values of the supporting force
The f ’s may be compactly expressed in terms of a gene
ized scalar product̂ . . . u . . . &a :

f ab5^F̃aun̂ab&a. ~5!

The scalar product̂ . . . u . . . &a is defined such tha

^n̂abun̂ab8&a5dbb8 . for the supporting contactsb, b8 of
beada. In general, it does not coincide with the convention
scalar product. The resulting response function,G(abug),
can be calculated as the superposition of all the projec
sequences~i.e., trajectories!, which lead from beadg to the
bondab:

G~abug!5 (
(g→a1 . . . →a→b)

un̂ga1
&g^n̂ga1

un̂a1a2
&a1

. . .

3^n̂akaun̂ab&a . ~6!

Here the summation is done over all the trajector
(g→a1→ . . . →ak→a→b) such that any bead in th
sequence is a supporting neighbor of the previous one.

III. ADAPTIVE NETWORK SIMULATION

For a large enough system, sequential packing is not c
patible with the requirement of nontensile contacts. Anytim
when this requirement is violated, a rearrangement occ
and system finds a ‘‘better’’ configuration. One might expe
that this would make the problem of force propagation
dynamic one. However, it is possible to limit oneself to
purely geometrical consideration, following the ideas of t
previous section.

Supposeab is a ‘‘bad bond,’’ whose contact force i
negative~tensile!. This means that the network would mov
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2512 PRE 62ALEXEI V. TKACHENKO AND THOMAS A. WITTEN
in such a way that the two beads,a andb are taken apart. In
other words, the soft mode associated with the perturba
of the ab bond is activated, and for small enough displac
ments all the beads move in accordance with Eq.~4!. The
motion stops when a replacement contact is created,
when a gap between any two neighboring beads closes.

In this paper, we limit ourselves to this linear approxim
tion. It should be understood that Eq.~4! is correct only for
infinitesimal displacements, and in a general case one sh
account for the evolution of the response function in
course of the rearrangement. We avoid the problem
changingG by permitting only infinitessimal motion in the
model. We imagine that the ‘‘bad bond’’ gets deactivate
and it is replaced with a rigid ‘‘strut’’ between two neigh
boring beads that were not in contact in the previous c
figuration. There is a natural choice for where the st
should be placed to cause minimal disturbance. Each pa
noncontacting neighborsgd has a gapr gd2r g2r d . When
the contactab is removed, the distancer ab is allowed to
change; this change alters the gaps of other neighborsgd as
specified by Eq.~4!. Extrapolating this linear-response equ
tion, motiondr ab required to close gapgd is given by

dr ab5
r gd2r g2r d

n̂gd•@G~abug!2G~abud!#
. ~7!

~For many choices ofgd the requireddr ab is infinite since
the ab contact has no effect on thegd gap.! Using this
formula, we identify the gapa8b8 that would require the
smallest change ofr ab in order to close, and we link this pa
by a strut.

After we have found the replacement bond, the modifi
response function can be foundwithout solvingthe whole set
of force balance equations~1!! We denote the response fun
tion for the initial packing asG0. The new response functio
G must be such that there is no longer a contact forcef ab .
In general there is such a force in the initial packing. Ho
ever, we may alter this unwanted force by adding an exte
force to some other bead. We choose to add external fo
to beadsa8 andb8 that mimic a contact force: the two force
are equal, opposite, and directed along the unit vectorn̂a8b8
joining them, with a strength denotedf a8b8 . Our choice of
the replacement pair guarantees that the effect ofa8 or b8 on
the ab contact is nonvanishing. Then the force on this co
tact is given by

f ab5(
g

Fg•G0~abug!1 f a8b8@G0~abua8!

2G0~abub8!#•n̂a8b8 . ~8!

We may make thisf ab vanish by a proper choice of th
external forcef a8b85(gFg•G(a8b8ug), whereG(a8b8ug)
is the new response function, found by requiring thatf ab
vanish in Eq.~8!:

G~a8b8ug!52
G0~abug!

n̂a8b8•@G0~abua8!2G0~abub8!#
.

~9!
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A contact force on an arbitrary contact is now determin
by a combination of external forcesFg and the above-
determinedf a8b8 . This results in the following expressio
for G(lmug) (lm other thana8b8);

G~lmug!5G0~lmug!

2G0~abug!
n̂a8b8•@G0~lmua8!2G0~lmub8!#

n̂a8b8•@G0~abua8!2G0~abub8!#
.

~10!

This prescription gives the response of the pack to a c
of contact replacements. The prescription does not req
either the initial or the final state to be stable: it allows te
sile contacts. Using the contact replacement procedure
may investigate the stability of a pack systematically. O
algorithm has two major stages: network preparation and
‘‘mutation’’ via the contact replacement scheme. By repe
ing this adaptive procedure sufficiently many times, one m
hope to get the stable configuration without tensile forc
~for a given loading!, just like the real system would do
There is a possibility that the present geometry-preserv
algorithm could not stabilize the network. For instance if t
tangential component of the surface force is strong enoug
is expected to initiate a macroscopic avalanche, as in a s
pile with slope exceeding the critical angle. This class
rearrangements is beyond the capabilities of our connecti
mutation scheme. This circumstance has even certain ad
tages: we can determine the critical slope from our simu
tions as the direction of the surface force at which the al
rithm stops working. It should be emphasized that o
algorithm can easily be modified to incorporate the chang
the network geometry. The major reason why we use
above geometry-preserving~‘‘strut’’ ! approximation is its
much higher computational effectiveness.

IV. SIMULATION DETAILS AND RESULTS

A. Method

We begin by creating a two-dimensional sequential pa
of variable-sized discs by adding them one by one. The s
ied system has the following parameters: polydispersity 1
~bead radii from 1 to 1.1!, number of beads,N from 250 to
500 ~the major limitation is the computation time!. Although
there is no gravitational force acting on the beads in th
simulations, the statistics of the packing can be varied
changing the ‘‘pseudogravity’’ directionĝ. Namely, while
adding a bead to the packing we requireĝ to be directed
between the two supporting contacts. Simultaneously,
calculate the response function, by using the sum-ov
trajectories formula, Eq.~6!.

Then we apply certain load to beads on the surface. In
studied cases, the forces applied to the surface beads we
the same, with the only principal variable being the ratio
the two componentsf x / f y (y is the vertical direction, the
surface in average is parallel tox due to the periodic bound
ary conditions in the horizontal direction!. As long as the
response function is given, we may find all the contact for
for a given load. As we have found, tensile contacts app
within a few beads from the surface. We analyze the sign
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PRE 62 2513STRESS IN FRICTIONLESS GRANULAR MATERIAL: . . .
the contact forces one by one, from top to bottom~in the
order opposite to the one in which the beads were origin
deposited!. When a tensile contact is encountered, we foll
the contact replacement procedure described in the prev
section: find the new bond and modify the response func
to account for the connectivity change. Now we repeat
procedure again starting from the very top until there is
tensile contact left in the system Figure 1 shows a seque
of four typical steps in this procedure. Evidently the remov
and the added contact may be far apart.

It sometimes happens that this prescription does not
move the tensile contacts: the removal of a tensile con
continues to generate others. In this case we may modify
procedure for selecting the next tensile contact to remo
For example we may select the strongest tensile contac
stead of that tensile contact having the largest sequence n
ber. Such alternative prescriptions seem to have little ef
on the force network, as discussed in the next section.

B. Variability and reproducibility

While our bond replacement procedure mimics the w
the real system should rearrange, our choice of the ‘‘b
bond’’ to be replaced is far more arbitrary. For instan
instead of checking the sign of the contact forces one by
from top to bottom, we could go the other way, or try
replace the contact bearing the largest negative force fi
Neither of these prescriptions is very realistic; however,
find that the results are insensitive to the procedure. In o
to probe this sensitivity, we compared the results from t
different ‘‘annealing’’ procedures. The first was the proc
dure described in the previous subsection. The second
cedure is as follows. We perform exactly the same one-
one check, as in the previous case, but do not remov
negative bond unless the magnitude of the force exceeds
tain tolerance threshold. When no more bonds remain in

FIG. 1. Four typical steps in our annealing sequence. The be
are pictured as circles and the bonds are shown as gray l
Upper-left to lower-right shows moves 804–807. The entire ann
ing process required 1491 such moves. In each frame the rem
contact is shown as a thick-white line; the added contact is sh
as a thick-black line.
ly
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system for a given threshold level, we reduce the tolera
and repeat the procedure. The threshold plays a role of t
perature: keeping it finite allows us to deviate from the tar
~nontensile! state of the system and explore its vicinity at t
configuration space. The second annealing algorithm c
verges considerably faster than the zero-tolerance one.
instance, it took us from 1500 to 3000 iterations to compl
the original algorithm with 500 beads, while the anneali
procedure reduced the needed time to approximately 5
1000 steps. Interestingly, the variation of the converge
time is of order of the time itself.

We have found that the contact configuration result
from the annealing procedure does differ from the one g
erated by the zero-tolerance algorithm~see Fig. 2!. However,
we did not detect any statistically-significant variation of t
ensemble-averaged properties of the final state obtained
the two methods. These properties included the aver
stress and the contact force probability distribution funct
~PDF!, presented below.

C. Macroscopic constitutive equation

One of the crucial results of the simulation is that o
geometry-preserving adaptive network algorithm does c
verge for a considerable range of force direction. It sto
working whenu f x / f yu approaches 0.6~for packing prepared
at vertical pseudogravityĝ. This suggests that the critica
slope for the frictionless packing is about 30 degrees, c
sistent with simple theoretical arguments and some exp
ments@17# Note that this slope may considerably exceed
angle of repose in dynamic experiments and simulations
cause of hysteresis associated with the lack of damping

ds
s.
l-
ed
n

FIG. 2. Pattern of contact forces from two different anneali
runs on the same bead pack. Each contact force is shown as a
joining the centers of the two contacting beads. Thickness of
line is proportional to the magnitude of the force. Dark lines sh
forces obtained by replacing each tensile contact as it is enc
tered in a search from the top down. Light lines show the for
obtained when only strongly tensile contacts were replaced at fi
Then when no further strongly tensile contacts remained, the re
the tensile contacts were relaxed. The heavy-horizontal lines a
the bottom are artifacts introduced by our rendering program.
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2514 PRE 62ALEXEI V. TKACHENKO AND THOMAS A. WITTEN
the frictionless system. Presumably, the critical slope can
observed by quasistatic tilting of a zero-slope packing.

Another interesting observation is that the eventual c
nectivity of the packing is not too different from the origin
sequential packing. For example, the 500-bead system n
up to 3000 iterative steps~rearrangements! to find the stable
state, and yet only 150 out of 1000 contacts (15%) in
final configuration are different from the original networ
This provides us with a solid background for using the
quential packing as the zero-order approximation of the
network. This was one of the major hypothesis used in
earlier work@16# to derive the constitutive equation of fric
tionless granular packing.

One more hypothesis, used for derivation of the mac
scopic equation for stress is the mean-fielddecoupling An-
satz. The average stress in a region of a sequential pac
can be written@16#

s i j ~x!5K (
a

(
b(←a)

d~xa2x!^F̃aunab&anab
i nab

j r abL .

~11!

The sumb is over the beads that support the beada. Our
mean-field hypothesis consists in assuming that the fo
related part of this average is independent of the geomet
part. We define

f~x![K (
a

d(xa2x)^F̃au L , ~12!

and

t̂[K (
b(←a)

unab&anab
i nab

j r abL . ~13!

Then our mean-field assumption amounts to the stateme

s i j 5f• t̂ ~14!

The mean-field hypothesis can be directly checked
unperturbed sequential packing, where both fieldsf andt̂ are
well defined. The results of such a check are represente
Fig. 3. The exact values of various stress components
shown to be in an excellent agreement with their evalua
based on the mean-field ansatz. We conclude that the m
field is a very good approximation at least for nonadapt
sequential packing.

As long as the rearrangements are switched on, there
obvious way to define the concept of supporting neighb
and therefore the ‘‘force from subsequent beads’’f is ill
defined as well. However, a more general meaning of c
stitutive Eq. ~11!, is that the stress is parametrizable w
somevector f, and the third-rank material tensort̂ estab-
lishes this parametrization. We now taket̂ corresponding to
the original prerearrangement sequential packing and p
the ansatz by checking whether the total stress~after the
adaptive procedure! can be expressed ast̂•f. In other words,
we compare the only unknown component of the stresssxx
~two other are given by the boundary conditions! with its
theoretical value obtained fromt̂. We performed this check
for two different classes of packing, corresponding to diff
e
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ent directions of ‘‘pseudogravity,’’gx /gy50 and 0.2. The
agreement between the two curves is surprisingly good
long as the direction of the applied force does not deviate
much from the preparation conditions~i.e., from the pseudo-
gravity vector!, see Fig. 4.

D. Response function

As noted above, our system transmits forces in acc
with a null-stress constitutive property. Given the null-stre
law, one may infer the corresponding response functionG.

FIG. 3. Various components of stress tensor in original sequ
tial packing~before the adaptive stage!, as functions of the direction
of the applied force. Note a remarkable agreement between
mean-field results~dashed lines! and the simulation data~solid
lines!.

FIG. 4. The only free parameter of the stress tensor,sxx /syy ,
as a functions of the direction of the applied force, after the ad
tive algorithm is completed. The solid lines show the simulatio
results corresponding to two different directions of ‘‘pseudogra
ity’’ vector g. The dashed lines represent the null-stress law co

sponding to the material tensort̂ computed for the original sequen
tial packing.
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PRE 62 2515STRESS IN FRICTIONLESS GRANULAR MATERIAL: . . .
The force transmission is transmitted from a point sou
according to a wavelike equation@3#. In a medium where all
nonvertical directions are equivalent, the force should pro
gate downward along slanting characteristic lines, wh
slope is dictated by the only parameter in the null-stress l
The responding region lies within the ‘‘light cone’’ bounde
by these lines. In two dimensions, the response consist
two delta functions traveling along the light cone. Disorde
expected to scatter the wave solutions of the pure sys
thus resulting in a widening of the delta peaks. This scat
ing could be sufficient to create qualitative new mesosco
behavior from localization effects@18#. Our simulated sys-
tem shows strong influence from disorder, as illustrated
Fig. 5. Because there can be no vertical-force response a
top of the system, we observe a global anisotropy, w
stronger responses below the source than above it. The
sponse is also strongly heterogeneous.

Our simulations allow us to perform ensemble averag
of the response stress field. Figure 6 shows the result
such averaging over 600 realizations of the network. As
perturbation propagates deep into the sample, the resp
function gets a two-peak shape, in a good agreement with
null-stress law. As expected, the peaks are broadened b

FIG. 5. Two patterns of contact forces resulting from a pertu
ing point force in a single relaxed configuration. Perturbation w
an infinitesimal downward force applied at the points shown
heavy dots. A compressive contact force is indicated as a dark
joining the centers of the two contacting beads. Thickness is
portional to the magnitude of the force. Tensile forces are indica
as lighter-gray lines.

FIG. 6. syy component of the ensemble-averaged response
unit vertical force applied at the origin (x50,y50). The response
is measured at several horizontal cross sections below (y523,
29) and above~y56! the source. Coordinatesx andy are measured
in units of minimal bead radiusr min , and the unit stress isr min
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disorder, and one cannot resolve them immediately be
the source. Another important observation, which also s
ports the null-stress approach, is that the average respon
virtually zero above the source. Note that we have stud
only the linear response of the system, so that the pertu
tion did not change the contact network. This need not be
case in the experiments involving strong local perturbatio
@19#.

E. Contact force distribution function

Our simulation allows us to address yet another intere
ing and widely-discussed problem: the statistics of cont
force. Recent experiments indicate that this distribution c
be well approximated as exponential, that is, it is consid
ably wider than a naively-expected Gaussian. This is rela
to the strong heterogeneities of the mesoscopic stres
granular matter: it appears to be localized to stringlike str
tures known as force chains.

In the initial sequential packing there is no constraint
the sign of the contact force, and its amplitude appears
grow indefinitely with the packing depth. After the rea
rangements, there are no negative forces in the system,
therefore their amplitude cannot grow forever~the total
transmitted force is fixed!. Figure 7 shows the spatial distr
bution of the contact forces in the systems of two differe
degrees of polydispersityafter the adaptive stage is com
pleted. One can clearly see that our simulations are at lea
qualitative agreement with experiment: it is easy to ident
the force chains in both cases.

We were also able to make a quantitative comparison
tween the simulations and experiments. Figure 8 shows
probability distribution function of the contact force take
from our simulations of almost monodisperse system. It
parently agrees with the exponential histogram observed
perimentally. An insight into the origin of this exponenti
behavior is given by the ‘‘q model’’ due to Coppersmi
et al. @10#. Somewhat more realistic modification of th
model have been proposed by Claudinet al. in Ref. @20#. The
further discussion of this intriguing result will be publishe
elsewhere@16#.

V. CONCLUSION

In the study of granular materials, clearcut confirmati
of theories has been elusive. One predicted feature of g

-
s
s
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FIG. 7. Pattern of contact forces from two bead packs of diff
ent polydispersity. Left picture has ten percent variation in be
radius; right picture has three hundred percent variation. Each
tact force is shown as a line joining the centers of the two cont
ing beads. Thickness of the line is proportional to the magnitude
the force. In the right picture the bead positions are indicated
light gray.
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interest is the null-stress constitutive law postulated in@3#.
We have verified that null-stress behavior occurs in a sim
fied granular system embodying disorder, perfect rigidity a
cohesionless contacts. We have measured the free para
in the null-stress law for several situations. We have c
firmed the validity of our major assumptions used for mic
scopic foundation of this constitutive law@16#. Our simula-
tion also allowed us to compute directly the ensemb
averaged response function, thus providing an additio
check for the adequacy of the null-stress approach.

FIG. 8. Probability distribution function of the contact force
granular packing.
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The simulation method has further interesting features
demonstrates that stable configurations of isostatic force
works can be found without changing the positions of t
nodes. It also reveals order-unity variability in the micr
scopic force distribution resulting from the relaxation pr
cess. Finally, it shows strongly heterogeneous respons
point forces—much stronger than that of the geometric c
tact network. This suggests strong multiple-scattering f
tures in the force propagation.

The observed exponential probability distribution fun
tion for the contact force is in a good agreement with t
experiments. Since there is also an indirect experimental s
port for the null-stress law, our choice of the system~hard
frictionless spheres! appears to be an adequate simplificati
to capture the basic physics of granular rigidity. The furth
simplifications, such as the fixed-geometry adaptive al
rithm provide an effective tool for the future studies of th
problem. This may include a study of nonlinear response
the system to large localized perturbation, effects of polyd
persity, and history dependence of the response.
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